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Abstract

The numerical method presented in this paper aims at solving the incompressible Navier–Stokes equations in un-

bounded domains. The problem is formulated in cylindrical coordinates and the method is based on a Galerkin ap-

proximation scheme that makes use of vector expansions that exactly satisfy the continuity constraint. More

specifically, the divergence-free basis vector functions are constructed with Fourier expansions in the h and z directions

while mapped B-splines are used in the semi-infinite radial direction. Special care has been taken to account for the

particular analytical behaviors at both end points r ¼ 0 and r ! 1. A modal reduction algorithm has also been im-

plemented in the azimuthal direction, allowing for a relaxation of the CFL constraint on the timestep size and a possibly

significant reduction of the number of DOF. The time marching is carried out using a mixed quasi-third order scheme.

Besides the advantages of a divergence-free formulation and a quasi-spectral convergence, the local character of the B-

splines allows for a great flexibility in node positioning while keeping narrow bandwidth matrices. Numerical tests show

that the present method compares advantageously with other similar methodologies using purely global expansions.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we present the extension of a mixed B-spline/spectral approach to solve the Navier–Stokes

equations in unbounded domains. As an introduction, we briefly cover some preliminary considerations that
led to the development of the present method and then give the Navier–Stokes equations with the appro-

priate set of boundary conditions in cylindrical coordinates. The numerical method is presented in Section 2,

including a brief recapitulation of B-spline properties. Application examples for three different flow prob-

lems are presented in Section 3. The article concludes by a brief discussion on some performance issues.
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1.1. Preliminaries

The numerical solution of unbounded problems requires essentially two levels of approximation [1]. The

first one consists in passing from the continuum problem to a discrete set of algebraic equations. The

second one requires the proper representation of the boundary conditions.

Let us consider the boundary conditions first and assume that the flow problems of interest here satisfy

‘‘physical’’ periodicity in the longitudinal z direction. We then use a cylindrical coordinate formulation

which in turn includes a natural periodic direction in h. Following this choice, special care must be taken in

order to properly account for the regularity conditions at both ends of the radial interval r ¼ 0 and r ! 1;

the specific behaviors are given below.
As for the discretization of the continuum, we consider Fourier series expansions as the optimal choice

for both periodic directions. For the radial coordinate, several types of spectral expansions have already

been used for bounded [2–4] and unbounded [1,5,6] intervals, see e.g., Boyd [7] for a more complete review.

The bounded methods may be used on a truncated domain but could become expensive for approximating

slow decaying functions [1]. The latter unbounded formulations, based on different types of mapped

polynomial expansions, are more appropriate for such situations. They also offer some flexibility, through

the definition of the mapping function, to adjust the positioning of the computational nodes where they are

most needed, but this may come at the expense of having full matrices and loss of spectral convergence (for
some possibly high but finite order) as in [8].

This last point led us to undertake the development of the present spectral/B-spline method. The

choice of using piecewise polynomials in the mapped radial direction allows for a great flexibility in

node positioning while keeping narrow bandwidth matrices. Furthermore, because of their extra

smoothness, the local B-spline functions exhibit quasi-spectral convergence properties and are numer-

ically better behaved than some more classical finite element approaches [9,10]. Our choice for B-spline

interpolation was also supported, a posteriori, by the publication of an independent but similar

methodology developed and used for wall-bounded flow simulations [11,12]. The present work can thus
be seen as an extension, for unbounded domains, of the method developed by Loulou et al. [12] for

pipe flow simulations.

1.2. Governing equations and boundary conditions

The present numerical method is devised to solve the incompressible, unsteady Navier–Stokes equation

ou

ot
¼ �rP þ 1

Re
r2uþ F ð1Þ

with

r 	 u ¼ 0: ð2Þ

The different terms in (1) and (2) are identified as follows: u is the velocity vector, P 
 p þ 1
2
juj2 is the

total pressure, and F 
 u� x is the nonlinear forcing term which includes the vorticity vector x 
 r� u.
The Reynolds number is defined as Re 
 �UUref

�LLref=�mm; where both reference scales �UUref and �LLref depend on the

particular flow problem considered; the overbar notation is used to represent dimensional quantities.

Equations (1) and (2) are to be complemented with appropriate initial and boundary conditions. More

specifically, for the boundary conditions we have a periodicity condition, aligned with the z coordinate and,

perpendicular to it, a decaying condition, respectively, written

uðx; tÞ ¼ uðxþ Lzêez; tÞ and lim
r!1

uðx; tÞ ¼ 0; ð3Þ
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where Lz is the given periodicity length and x ¼ rêer þ hêeh þ zêez ¼ fr; h; zg. In addition, special care must be

taken in cylindrical coordinates since the differential operators are singular at both r ¼ 0 and r ! 1
[6,7,12,13].

On the longitudinal axis r ¼ 0, the analyticity condition requires that the Cartesian components of an

arbitrary vector Wðr; h; zÞ ¼
P

kh;kz
bWWðrÞeiðkhhþkzzÞ behave as

lim
r!0

fbwwx;
bwwy ;
bwwzg ¼ Oðrjkhjþ2pÞ;

where p is a non-negative integer and ‘‘b’’ denotes the Fourier transform in h and z (with corresponding

wavenumber kh and kz). For cylindrical vector components, we obtain

bwwr � ibwwh ¼ ½bwwx � ibwwy �rjkh�1jþ2p ð4Þ

with bwwz remaining unchanged. The complete set of analyticity conditions can thus be written for r ! 0

as

r½bwwr þ ibwwh� ¼ Oðrkhþ2pþ2Þ for kh P 0;

r½bwwr � ibwwh� ¼ Oðrkhþ2pÞ for kh P 1;

r½bwwr þ ibwwh� ¼ Oðrjkhjþ2pÞ for kh 6 � 1;

r½bwwr � ibwwh� ¼ Oðrjkhjþ2pþ2Þ for kh 6 0;bwwz ¼ Oðrjkhjþ2pÞ for jkhjP 0

ð5Þ

with p ¼ 0; 1; 2; 3; . . . At the point r ¼ 0, the conditions in (5) simplify to the essential unicity condition

oWðr ¼ 0Þ=oh ¼ 0.
At r ! 1, imposing a decaying condition is somewhat more arbitrary. For example, if the initial

condition is related to a vorticity field having a compact support, the flow in the far field could then be
considered irrotational since the vorticity would be at most exponentially small there. The same problem

could also be formulated in terms of a more general class of flows that would allow algebraically decaying

vorticity instead. Let us consider for now a vector field bWW that both decays and is harmonic as r ! 1. The

Cartesian components must then behave as

lim
r!1

fbwwx;
bwwy ;
bwwzg ¼ Oðr�jkhjÞ; ð6Þ

with the additional constraint

lim
r!1

rjkhjbwwx ¼ i sgnðkhÞ lim
r!1

rjkhjbwwy ; ð7Þ

where sgnðkhÞ 
 kh=jkhj [13]. The two conditions (6) and (7), expressed in terms of the cylindrical vector

components, give at once

lim
r!1

frbwwr; rbwwh;
bwwzg ¼ Oðr�jkhjÞ;

lim
r!1

rjkhjþ1bwwr ¼ i sgnðkhÞ lim
r!1

rjkhjþ1bwwh:
ð8Þ

In the present case, this harmonic decaying behavior is not enforced directly on the velocity vector but
rather on a vector W such that u 
 r� W, giving an algebraically decaying condition on both the velocity

and the vorticity fields.
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2. Numerical method

The spatial discretization is constructed from a standard Galerkin approximation [7,14] based on the

divergence-free approach of Leonard [15]. We follow the Helmholtz–Hodge decomposition formulation

[16] where the formal no-through flow condition – or the full no-slip condition used in similar projections

for bounded domains [2,12,17,18] – is replaced by an appropriate decaying condition. Thus, by taking the

inner product of (1) with a test vector function U satisfying

r 	 U ¼ 0 and lim
r!1

U 	 n ¼ 0; ð9Þ

we obtain, after integrating by parts the viscous term,

U;
ou

ot

� �
¼ � 1

Re
hr � U;r� ui þ hU;Fi: ð10Þ

The inner product is defined here by

hv; ui 

Z

X
v� 	 udV ; ð11Þ

where X represents the domain of integration and ‘‘*’’ the complex conjugate. If u is also made to satisfy the

continuity constraint (2) and the homogeneous boundary conditions (3), then Eq. (10) represents the

complete statement of the problem to solve.

Now, an approximate solution of (10) is sought in the form of

uðr; h; z; tÞ ¼
X
l

X
m

X
n

almnðtÞWlðr; kh; kzÞeikhheikzz ð12Þ

with

kh ¼ m
2p
Lh

and � Nh 6m6Nh;

kz ¼ n
2p
Lz

and � Nz 6 n6Nz;

and 16 l6Nr. Notice that in the above, the angular periodicity Lh has been left as an adjustable parameter

that may be set to entire fractions of the total arc length 2p.

Now, if the general vector expansion Wl is divergence-free, then only two independent basis vectors are

required to completely define it. These vectors may be associated with a ‘‘þ’’ and ‘‘�’’ class [2], and are

accordingly identified by the set fWþ
l ;W

�
l g. Also, because u is real, only half of the coefficients a�

lmn are
independent (in m an n), the other half being determined by complex conjugate symmetry. We thus consider

for now on that kh P 0.

For the construction of the W�
l , we follow Loulou et al. [12], but with a set of different radial basis

functions. In the general case, where kh > 0 and kz 6¼ 0, we set

Wþ
l ¼ dr�r�

0

0

�kzrGl

8<:
9=; ¼ kz

�ikhGl

ðrGlÞ0
0

8<:
9=;; ð13Þ
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W�
l ¼ dr�r�

�iGl

Gl

0

8<:
9=; ¼

�ikzGl

kzGl

G0
l þ ð1 � khÞr�1Gl

8<:
9=;: ð14Þ

The ‘‘ dr�r�’’ stands for the Fourier-transformed curl operator and the GlðrÞ are real valued functions that

form a basis for the radial direction; the variable dependence has been omitted for simplicity. Because (13)

and (14) are incomplete when either one or both kz ¼ 0 and kh ¼ 0, the following expansions are added: for

kh > 0 and kz ¼ 0,

Wþ
l ¼ dr�r�

0

0

�rGl

8<:
9=; ¼

�ikhGl

ðrGlÞ0
0

8<:
9=;; ð15Þ

W�
l ¼ dr�r�

�iGl

Gl

0

8<:
9=; ¼

0

0

G0
l þ ð1 � khÞr�1Gl

8<:
9=;; ð16Þ

for kh ¼ 0 and kz 6¼ 0,

Wþ
l ¼ dr�r�

�iGl

0

0

8<:
9=; ¼

0

kzGl

0

8<:
9=;; ð17Þ

W�
l ¼ dr�r�

�iGl

Gl

0

8<:
9=; ¼

�ikzGl

kzGl

G0
l þ r�1Gl

8<:
9=;; ð18Þ

and finally for kh ¼ 0 and kz ¼ 0,

Wþ
l ¼

0

Gl

0

8<:
9=;; ð19Þ

W�
l ¼

0

0

r�1Gl

8<:
9=;: ð20Þ

We now replace (12) in (10) with the test vector functions defined as U 
W�
l0 e

ik0
h
heik0zz and thus obtain, for

each independent modal pair kh; kz, a set of ODEs symbolically written as

Aþ
þ _aaþ þ A�

þ _aa� ¼ Bþ
þaþ þ B�

þa� þ Fþ;

A�
� _aa� þ Aþ

� _aaþ ¼ B�
�a� þ Bþ

�aþ þ F�:
ð21Þ

The _aa� represents the time derivative of a� and the various indices as well as the summation in l are here

implicitly assumed. The components of the radially coupled inertia A and viscous B matrices are, respec-

tively, given by

½Ac
d�l0l ¼

Z 1

0

ðWd
l0 Þ

� 	 ðWc
lÞrdr and ð22Þ
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½Bc
d�l0l ¼ � 1

Re

Z 1

0

ð dr�r�Wd
l0 Þ

� 	 ð dr�r�Wc
lÞrdr ð23Þ

with d and c symbolizing alternatively both the ‘‘þ’’ and ‘‘�’’ classes. As for the nonlinear term

fFcgl0 ¼
1

LhLz

Z Z Z
Wc�

l0m0n0e
�ik0

h
he�ik0zz 	

X
l

X
m;n

a�
lmnW

�
lmne

ikhheikzz

"
�r

�
X
l�

X
m�;n�

a�
l�m�n�

W�
l�m�n�

eikh�heikz�z

 !#
rdrdhdz; ð24Þ

it is evaluated using a de-aliased pseudospectral procedure in the Fourier directions [7,14] and convolution
sums in the radial coefficient space [11–13]. Finally, the time marching of (21) is carried out using the mixed

implicit/explicit, quasi-third order scheme proposed by Spalart et al. [19]; the marginal stability curve of the

scheme is shown in Fig. 1.

2.1. B-spline functions

The radial dependency of the vector functions introduced above is now addressed. More specifically, the

radial basis functions Gl are constructed from mapped B-splines, and are at the heart of the present spatial

discretization. We therefore begin by considering the mapping function and then cover some of the basic

properties of B-spline functions.

The unbounded radial domain r 2 ½0;1½ is mapped into the bounded interval g 2 ½0; 1� using as simple a

relation as possible, i.e., in the present case the algebraic mapping

g ¼ r
r þ L

; ð25Þ

where L is an adjustable scaling parameter; see [1] for further details. As a consequence of (25), the generic

decaying behavior

Fig. 1. Marginal stability curve for the time marching scheme, proposed by Spalart et al. [19], for the linear equation du=dt ¼ ku. The

scheme is stable in the region at the left of the curve.
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lim
r!1

gðrÞ ¼ Oðr�khÞ; ð26Þ

transforms to

lim
g!1

gðrðgÞÞ ¼ Oðð1 � gÞkhÞ; ð27Þ

i.e., a kh-fold zero condition at g ¼ 1 – the function gðrðgÞÞ and its kh � 1 first derivatives are zero at that
point. From this result, the decaying conditions expressed in (8) can be enforced on (13)–(20) in a

straightforward manner. As for the regularity conditions (5), they remain essentially unchanged since

g � r=L as r ! 0. Both sets of regularity/boundary conditions are thus representable by polynomial

functions of order kh or less.

Let us now formally define our basis functions on the mapped domain such that

GlðrðgÞÞ 
 BlðgÞ; ð28Þ

and where Bl is a B-spline of adjustable order k [20]. B-splines of order k, or degree k � 1, can be evaluated

using the recurrence relation

BðkÞ
l ðgÞ ¼ g � tl

tlþk�1 � tl
Bðk�1Þ
l ðgÞ þ tlþk � g

tlþk � tlþ1

Bðk�1Þ
lþ1 ðgÞ ð29Þ

with first order B-splines being simply defined as unitary ‘‘top hat’’ functions, viz.

Bð1Þ
l ðgÞ ¼ 1; tl 6 g < tlþ1;

0; otherwise:

�
ð30Þ

Following de Boor�s notation [20], the set ftlg defines here the knots on which rests the radial discretization.

B-splines are Ck�2 continuous piecewise polynomials with a compact support defined such that

BlðgÞ ¼ 0 for g 62 ½tl; tlþk�: ð31Þ

Furthermore, from the above definitions it may also be shown that

Bl0 ðgÞBlðgÞ
6¼ 0; l0 � k þ 16 l6 l0 þ k � 1;
¼ 0; otherwise:

�
ð32Þ

The nonzero values in both set of matrices (22) and (23) are thus confined to a narrow bandwidth of

2k � 1 and the convolution sums in (24) can in turn be evaluated in OðNrk2Þ operations instead of OðN 2
r Þ. An

example of a simple, but complete, fourth order B-spline discretization is shown in Fig. 2.

The particular basis functions G5ðrÞ, associated to the spline B5ðgÞ of Fig. 2, are additionally illustrated

in Fig. 3 for different values of the mapping parameter L. Note finally that the regularity/boundary con-
ditions are technically imposed by properly constraining the k � 1 coefficients a�

lmn attached to each one of

the two end points g ¼ 0 and 1.

3. Examples

The numerical method presented in the previous section has been the object of an extensive validation

[13]. In this section, we present three examples of applications related to the linear stability and early stage
nonlinear dynamics of some particular vortex flows.
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3.1. Linear stability of a trailing line vortex

The trailing line or Batchelor q-vortex flow is composed of a Gaussian (Lamb–Oseen) vortex to which is

superposed an axial jet-like flow [21], as shown in the schematic representation of Fig. 4. The base flow field
is written

UðrÞ ¼ 0êer þ
q
r
ð1 � e�r2Þêeh þ he�br2

êez; ð33Þ

where q scales the swirl intensity, h the centerline axial velocity, and b the relative radial extent of the axial

flow with respect to the vortex core size. The dimensional length and velocity scales are chosen as the vortex

core size radius �aa and the fraction 1=h of the centerline axial velocity �UUzðr ¼ 0Þ yielding the Reynolds

number Re 
 �UUz�aa=h�mm.

The linear stability of (33) is formulated through a normal mode decomposition [22] such that u ¼ Uþ u0
and

u0 ¼ buuðrÞeiðkhhþkzzÞekt þ c:c:;

Fig. 3. The basis functions G5 that correspond to B5 of Fig. 2 for the different mapping parameter values L ¼ 1; 2; 5, and 10.

Fig. 2. A simple but complete set of 9 cubic (k ¼ 4) B-splines. The knots tl are identified by the ‘‘�’’ symbols, uniformly distributed in

this particular example.
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where ‘‘c.c.’’ stands here for the complex conjugate. After replacing u in (10) and linearizing for the per-

turbation u0, one ends up, for each modal pair ðkh,kzÞ, with a generalized eigenvalue problem

kAa ¼ ½B�O�a; ð34Þ

where O is the linearized transport matrix. The complex valued kð¼ kr þ ikiÞ are then obtained using a QZ-

algorithm [23].

In Table 1, we show the results for the most unstable eigenmode for kh ¼ 1, kz ¼ 0:05, with q ¼ 0:5 and
h ¼ b ¼ 1, at Re ¼ 25. Here, N �

r is the number of ‘‘free’’ B-splines after imposing the boundary conditions,

the equivalent of the number of global expansion radial modes. The benchmark values computed by

Matsushima and Marcus [6] and Mayer and Powell [3] are also given for comparison. In the first case, the

Fig. 4. Perspective view of a q-vortex having parameter values of q ¼ 0:5 and h ¼ b ¼ 1. The vortex tube is represented by the two iso-

surfaces of longitudinal vorticity, xz ¼ 0:8 (inner surface) and xz ¼ 0:2 (outer surface). The spiral lines represent fluid particle tra-

jectories on each one of these surfaces.

Table 1

The most unstable eigenvalue for kh ¼ 1, kz ¼ 0:05, with q ¼ 0:5, h ¼ b ¼ 1, and Re ¼ 25

N �
r k � 104

10 9:936010736 þ i22:40212147

20 9:885122155 þ i22:38851112

30 9:885158802 þ i22:38705093

40 9:885164246 þ i22:38703955

50 9:885164396 þ i22:38703911

60 9:885164411 þ i22:38703907

70 9:885164411 þ i22:38703907

Ref. [6]a 9:8851644 þ i22:387039

Ref. [3]b 9:8851643 þ i22:387039

The results are obtained with uniformly distributed B-splines (in g) with k ¼ 6 and L ¼ 11.
a Rational Legendre functions: N �

r ¼ 60 and L ¼ 12.
b Chebyshev polynomials; N �

r ¼ 300 and Ro ¼ 200.
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radial discretization was done with rational Legendre functions on an unbounded domain having similar

boundary conditions as the ones used here. In the second case, Chebyshev polynomials were used in

combination with a no-slip condition imposed at a large but finite outer radius Ro. The present B-spline

values are seen to compare advantageously with both global method results.

As another example of application, we computed the neutrally stable (kr ¼ 0) asymmetric oscillations

of an inviscid columnar vortex for different values of the defining parameters q, h, and b, all for kh ¼ 1.

The results are shown in Table 2 and were obtained with N �
r ¼ 20 (uniformly distributed) and k ¼ 5.

All four digits shown are significant; computations with N �
r ¼ 40 were also carried out to check the

accuracy. The mapping parameter L was chosen, for each case, in order to minimize the difference

between the results at the two levels of discretization. This procedure is somewhat equivalent to the

choice of optimal mapping parameter used in [6]. As another comparison point, we include the values

obtained by the long-wavelength asymptotic analysis of Moore and Saffman [24] (cited from [6]) and

given by

ki

q
¼ � k2

z

2
ln kz

�
þ 1

2
ðc � ln 2Þ þ h2

2q2b
þ hkz
qbð1 þ bÞ

�
1

1 þ hkz=qb
; ð35Þ

where c ¼ 0:57721566 . . . (Euler�s constant). Both sets of numerical results are seen to be identical and are in
close agreement with the theoretical values, in particular for small kz (long wavelengths). The present

mapped B-spline approach is again seen to compare advantageously with the reference data.

3.2. Emergence of a triangular vortex

Some particular two-dimensional multipole vortices have been studied both experimentally and

numerically [25–27]. Among the different compound vortex structures observed is the so called ‘‘triangular

Table 2

The positive valued ki, of the neutrally stable inviscid columnar vortex; for all cases kh ¼ 1

No. kz h=q b L ki=q� 104

B-spline Ref. [6]a Eq. (35)

1 0.4 0.0 – 4 897.0 897.0 779.0

2 0.2 0.0 – 5 344.1 344.1 333.5

3 0.1 0.0 – 7 118.9 118.9 118.0

4 0.05 0.0 – 10 38.24 38.24 38.17

5 0.025 0.0 – 15 11.71 11.71 11.71

6 0.025 2.0 1.0 11 5.127 5.127 5.125

7 0.025 1.0 1.0 11 9.865 9.865 9.861

8 0.025 )1.0 1.0 11 10.45 10.45 10.45

9 0.025 )2.0 1.0 11 5.832 5.832 5.828

10 0.025 2.0 0.5 – � � �

11 0.025 1.0 0.5 11 8.081 8.081 8.076

12 0.025 )1.0 0.5 11 9.150 9.150 9.145

13 0.025 )2.0 0.5 - � � �

14 0.025 2.0 2.0 8 8.353 8.353 8.349

15 0.025 1.0 2.0 10 10.78 10.78 10.78

16 0.025 )1.0 2.0 10 11.08 11.08 11.08

17 0.025 )2.0 2.0 9 8.835 8.835 8.831

The present B-spline results were obtained with N �
r ¼ 20 and k ¼ 5. For comparison, we include the equivalent results of Ref. [6]

and the asymptotic values from Eq. (35).
aN �

r ¼ 59; from Table V in the reference.
* No positive values were found.
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vortex’’: a triangular shape vortex core surrounded by three vortex satellites of opposite sign vorticity. This

particular structure can be seen to emerge from a mode-3 instability of the base flow vorticity profile

Xzðr; aÞ ¼ ð1
2

ara � 1Þe�ra ð36Þ

with corresponding velocity Uhðr; aÞ ¼ �re�ra=2, and where a > 0. A few examples of the family of profiles

(36) are shown in Fig. 5 for different values of the parameter a. The reference time and length scales used for

normalization are, respectively, the inverse of the core center vorticity �XX�1
0 (with �XX0 
 �XXzð�rr ¼ 0Þ) and the

velocity profiles ‘‘crossing point’’ �RRc. The velocity scale directly follows as �XX0
�RRc which in turn gives the

Reynolds number Re 
 �XX0
�RR2

c=�mm.
We simulated the nonlinear evolution of the a ¼ 7 profile to which was added a low-amplitude white-

noise perturbation. The Reynolds number was set to Re ¼ 104 and the simulation was carried out with

Nr ¼ 95, k ¼ 5, L ¼ 2. The temporal evolution of the vortex is shown in Fig. 6. The most unstable

mode-3 is closely followed by the other low-order modes which lead to the eventual break-up of the

triangular vortex. The linear phase growth rates are given in Table 3, and are compared with their

corresponding quasi-inviscid values (the B-spline values were obtained with Re ¼ 108). These results

are in very good agreement with both the experimental observations and the numerical simulations

found in [26].
The timestep size Dt used to carry out our simulation was set to satisfy the CFL condition

2

3
pDtmax

jurj
Dr

�
þ juhj
rDh

þ juzj
Dz

�
¼ 1:7;

where the ‘‘max’’ is taken on the whole computational domain. In order to alleviate the possible over
resolution associated with a uniform Fourier truncation, i.e., Nh ¼ const: and Dh ¼ ð3=2Þp=Nh so that

rDh ! 0 as r ! 0, a modal reduction procedure [11–13,28] was implemented. Here, we used four dif-

ferent radial zones with truncation levels: from inside out Nh ¼ f6; 20; 42; 84g. The effective pseudo-

computational grid is show in Fig. 7, superposed to the t ¼ 50 solution. With this discretization, Dt
varied between � 0:01 and 0.04. The modal reduction technique may also possibly leads to a significant

reduction of the number of DOF. In the present example, we have a 28% reduction compared to a

single zone with Nh ¼ 84.

Fig. 5. Different profiles of vorticity (a) and velocity (b) corresponding to (36). The curves are plotted for a ¼ 3, 5, and 7.
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To verify the level of spatial resolution used, we checked the 2-D kinetic energy decay

dE
dt

¼ �2Re�1E; ð37Þ

where we have the total energy E 
 1
2

R
X juj2 dV and the total entrophy E 
 1

2

R
X jxj2 dV . It has been con-

firmed that (37) was satisfied to at least six digit accuracy up to about t ¼ 60. As the vortex structures move

Fig. 6. Emergence of a triangular vortex from an initial white noise perturbation (a ¼ 7 andRe ¼ 104). The vorticity contour values range

from�1 toþ1 with increments of 0:1; dash lines are for negative values and the zero contour is skipped. The presence of various low-order

mode instabilities leads to the break-up of the triangular (mode-3) symmetry and the eventual pairing of some of the satellites.

Table 3

Most unstable quasi-inviscid perturbation growth rate values for kh ¼ 2, 3, and 4, with a ¼ 7, along with the Re ¼ 104 values

Inviscid Re ¼ 104

Ref. [26]a NMb DNSc NMb DNSc

kh ¼ 2 0.220 0.220 0.21 0.21605 0.22

3 0.242 0.240 0.24 0.23461 0.234

4 0.197 0.194 0.19 0.18724 0.187

a Data interpolated graphically from Fig. 7 in [26].
b Present B-splines: Normal Mode analysis.
c Present B-splines: Navier–Stokes simulation.
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away from the domain center, the effective resolution obviously lowers and numerical error increases, to

become apparent at t ¼ 80 in Fig. 6. This shows the limitations of the present method for the simulation of

flow problems that strongly depart from any polar or axial symmetry.

3.3. Long-wave instability of a vortex pair

The third and last example relates to the development of a long-wave instability on a pair of counter-

rotating vortices, also known as a Crow instability [29]. The initial base flow is first defined in terms of two
counter-rotating Gaussian vortices such that

Xz ¼ Gðx� 1

2
; y; aÞ � Gðxþ 1

2
; y; aÞ; ð38Þ

where

Gðx; y; aÞ 
 2

a2
exp

�
� x2 þ y2

a2

�
: ð39Þ

The parameter a is the characteristic length associated with the vortex core size. It is defined such that

63.2% of the total circulation is included within a radius r ¼ a around the vortex center. For this

Fig. 7. A partial view of the pseudo-collocation grid used to evaluate the CFL criterion of the computation shown in Fig. 6. Note

the variation of modal resolution, from the center out Nh ¼ f6; 20; 42; 84g. The t ¼ 50 solution is also shown in background for

reference.
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problem, the dimensional length and velocity scales are, respectively, chosen as the vortices centerline

inner spacing �LLref ¼ �bb and the self-induced velocity �UUref ¼ �CC=ð2p�bbÞ (in the limit a ! 0). Following these

definitions, the nondimensional circulation C of a single vortex is thus C ¼ 2p, and the Reynolds number

is Re 
 �CC=2p. Finally, for all the results shown below, we used the numerical values a ¼ 0:2 and

Re ¼ 2600.

The base flow in (38) does not represent an equilibrium solution. Each one of the two vortices will

deform under the presence of a straining field induced by the adjacent vortex. A near equilibrium solution

was thus obtained after letting the pair interact for 1 time unit (the straining field time scale). To maintain
the vortex pair centered in the computational domain, a background upward velocity Ubg ¼ 0:95 was

furthermore added. The vortex pairs, before and after deformation, are shown in Fig. 8. The strained

vortex pair was obtained by a 2-D computation with Nr ¼ 89, k ¼ 4, L ¼ 2, and a multizone truncation

Nh ¼ f06; 18; 33; 65; 48g. The time marching was carried out with the criterion CFL ¼ 1:7, which in turn led

to Dt � 1:5–3:5 � 10�3. In this case, because of the important velocities present between the two vortices

(i.e., in the center of the computational domain), the modal reduction procedure is critical in order to keep

the timestep size at an acceptable value.

The initial condition for the computation of the instability was chosen as the 3-D extension of the so-
lution shown in Fig. 8(b), with a periodicity length of Lz ¼ 6:5, corresponding to the most unstable long-

wavelength of an equivalent Rankine vortex [30]. A low amplitude, long-wavelength perturbation was then

added to this new initial base flow field. The time evolution of the vortex pair is shown in Fig. 9; the

computation was carried out with a longitudinal truncation Nz ¼ 16. The results are in good qualitative

agreement with both the experimental results of Leweke and Williamson [30] and the numerical ones of

Laporte and Corjon [31].

4. Discussion

The various numerical tests carried out [13] showed that the present approach, using of local mapped B-

splines (in combination with spectral expansions), offers an advantageous alternative to purely global

functions [3,6] in the semi-infinite radial direction.

As for the global performance of such mixed spectral/B-spline approaches to solve the complete 3-D

unsteady Navier–Stokes equations, Loulou et al. [12], with a very similar method to this one, reported

comparable performances between their spectral/B-spline code and the mixing layer code (using Jacobi
polynomials instead of B-splines) of Spalart et al. [19]. It must nevertheless be noted that the cost

of the computation of the nonlinear term, in the present formulation, can become quite expensive.

Fig. 8. A 2-D section view of the vorticity distribution of the pair of Gaussian vortices, with a ¼ 0:2, is shown in (a). In (b), the

resulting strained vortices after an evolution of 1 time unit in a reference frame moving downward at a nondimensional velocity of 0.95.

Contours are for xz ¼ �30 to 30 with Dxz ¼ 1; the zero contour is skipped and dash lines are for negative values. The light cross

indicates the center of the computational domain.
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Kravchenko et al. [32] have reported figures in the range of 50% of the total CPU time for the

computation of that term. Values of 85% have been reported by Loulou et al. [12], and according to

the level of generality with which is implemented the modal reduction algorithm, this value can even

rise up to 90% [13].
Such considerations have recently led to the development of B-spline collocation approaches [33,34]

as a possible alternative. On the other hand, collocation methodology does not offer the advantages of

a divergence-free formulation – which requires the projection onto an appropriate functional space and

thus the use of basis functions – and it remains unclear to these authors which one is the most per-

forming method. Let us finally mention that a more complete discussion regarding the resolution

properties of local interpolation functions, including B-splines, can be found in the recent article by

Kwok et al. [35].

Fig. 9. Time evolution of the long-wavelength instability on the pair of counter-rotating vortices; the different times are shown on the

figure. The vortex tubes are represented, over two periodicity lengths, by iso-surfaces of jxj ¼ 10, and are viewed with a perspective

angle aligned with one of the two planes of instability such that the right vortex appears almost undeformed.
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